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Abstract
BACKGROUND: Models that can predict brain amyloid beta 
(Aβ) status more accurately have been desired to identify 
participants for clinical trials of preclinical Alzheimer’s disease 
(AD). However, potential heterogeneity between different 
cohorts and the limited cohort size have been the reasons 
preventing the development of reliable models applicable to the 
Asian population, including Japan.
OBJECTIVES: We aim to propose a novel approach to predict 
preclinical AD while overcoming these constraints, by building 
models specifically optimized for ADNI or for J-ADNI, based on 
the larger samples from A4 study data. 
DESIGN & PARTICIPANTS: This is a retrospective study 
including cognitive normal participants (CDR-global = 0) from 
A4 study, Alzheimer Disease Neuroimaging Initiative (ADNI), 
and Japanese-ADNI (J-ADNI) cohorts. 
MEASUREMENTS: The model is made up of age, sex, education 
years, history of AD, Clinical Dementia Rating-Sum of Boxes, 
Preclinical Alzheimer Cognitive Composite score, and APOE 
genotype, to predict the degree of amyloid accumulation in 
amyloid PET as Standardized Uptake Value ratio (SUVr). The 
model was at first built based on A4 data, and we can choose at 
which SUVr threshold configuration the A4-based model may 
achieve the best performance area under the curve (AUC) when 
applied to the random-split half ADNI or J-ADNI subset. We 
then evaluated whether the selected model may also achieve 
better performance in the remaining ADNI or J-ADNI subsets. 
Result: When compared to the results without optimization, 
this procedure showed efficacy of AUC improvement of up 
to approximately 0.10 when applied to the models “without 
APOE;” the degree of AUC improvement was larger in the 
ADNI cohort than in the J-ADNI cohort.
CONCLUSIONS: The obtained AUC had improved mildly 
when compared to the AUC in case of literature-based 
predetermined SUVr threshold configuration. This means our 
procedure allowed us to predict preclinical AD among ADNI 
or J-ADNI second-half samples with slightly better predictive 
performance. Our optimizing method may be practically useful 
in the middle of the ongoing clinical study of preclinical AD, as 
a screening to further increase the prior probability of preclinical 
AD before amyloid testing.

Key words: Amyloid beta, preclinical Alzheimer’s disease, machine 
learning, predictive model.

Introduction

Preclinical Alzheimer ’s disease (AD), which 
corresponds to positive brain amyloid beta (Aβ) 
accumulation in healthy individuals without 

an evidence of cognitive decline (1-3), is getting focused 
as the target of clinical trials aiming to develop disease-
modifying therapies for AD (4). Positive amyloid 
accumulation on amyloid positron emission tomography 
(PET) or lowered levels of Aβ42 in the cerebrospinal 
fluid (CSF) are used as the gold standard to include 
participants into clinical trials for preclinical AD (1). 

It is estimated that approximately one-third of 
cognitive normal elderly individuals have positive Aβ (5), 
which means that if randomly selected, it is necessary to 
screen 3 times more clinically eligible participants by PET 
amyloid imaging or CSF lumbar puncture to determine 
if they are actually amyloid positive or not. Indeed, in 
the A4 study in which 1,000 participants were included 
to conduct a double-blinded randomized clinical trial 
of solanezumab versus a placebo (6), more than 10,000 
clinically normal individuals were initially screened, and 
then the eligible 3,300 participants were further screened 
by PET amyloid imaging. 

If we have some predictive index that can increase 
the prior probability for the positive Aβ accumulation, 
the above cost/labor-consuming screening processes 
could become more efficient with a smaller number of 
participants requiring PET screening (7, 8). For example, 
an earlier study reported predicting Aβ of cognitive 
normal participants from an Alzheimer ’s disease 
Neuroimaging Initiative (ADNI) cohort (9) used 
demographic features of age, sex, education, APOE 
ε4 status, and cognitive scores, increasing the positive 
predictive value to 0.65 compared to the reference 
prevalence of 0.41 (7). 

Meanwhile, in case of a Japanese cohort such as the 
Japanese Alzheimer’s disease Neuroimaging Initiative 
(J-ADNI) (10-12) cohort, there is a concern in deriving 
similar predictive models from this cohort due to the 
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limited number of eligible cognitive normal participants. 
There are fewer than 100 participants included without 
lack of the necessary data in the J-ADNI (10, 12), so it 
is considered difficult to construct statistically robust 
models trained and validated within the Japanese cohort 
alone to date.

On the other hand, it might be also unsatisfying to 
apply the models derived from the external population 
out of the Japanese cohort directly, due to the potential 
heterogeneity of study participants among different 
cohorts. In other words, models derived from Anti-
Amyloid treatment in Asymptomatic Alzheimer’s disease 
(A4), ADNI, or Australian Imaging Biomarkers and 
Lifestyle Study of Ageing (AIBL) cohort data (13) might 
not always be applicable to the J-ADNI cohort as they are, 
since the variable importance of each feature in the model 
can differ depending on the cohort, due to the difference 
in the distribution of participants’ basic demographics. 
For example, baseline age and education or even the 
proportion of those with positive Aβ are shown to 
be significantly different between ADNI and J-ADNI 
cohorts (10). These problems might have prevented the 
development of clinical models that effectively predict 
preclinical AD in a Japanese cohort. 

As one of the solutions to overcome these constraints, 
here we propose to utilize models trained based on 
the A4 cohort data, which is a large dataset with more 
than 3,000 participants as of late 2019. Since the data 
characteristics of A4 participants and Japanese cohort 
(i.e. J-ADNI here) participants could somehow differ 
as we mentioned above, we optimized the A4-based 
models, thereby making the models more suitable to the 
J-ADNI cohort. Our proposing procedure is composed 
of two stages: the first is to generate numerous patterns 
of prediction models based on the A4 data with the 
varying standard uptake value ratio (SUVr) thresholds, 
and the second is to find the most appropriate SUVr 
threshold configuration among them so that the model 
based on the SUVr configuration would perform best 
in the randome-half of J-ADNI (or ADNI) dataset. The 
SUVr threshold is the critical cut-off to determine if there 
is amyloid accumulation in the PET or not (14) but is 
not always strictly established in the A4 study cohort, 
so adjusting the SUVr threshold leads to the varied 
allocation of amyloid positive/negative binary status in 
each case of the original A4 data. This is the operational 
procedure made solely for the purpose of identifying 
the best-performing models for other cohort data, and 
then we evaluate whether the obtained model based on 
the determined SUVr threshold can also take the better 
performance in the remaining J-ADNI (or ADNI) subset. 
Such ‘optimization’ procedure might allow us to build 
more flexible models, thereby enhancing the applicability 
of the obtained models to any external cohorts such 
as J-ADNI or ADNI. Practically, our proposed method 
might be useful as a predictive index available in the 
actual clinical study settings for preclinical AD, e.g., as a 

screening to increase the prior probability of preclinical 
AD just in the middle of ongoing preclinical AD studies.

Methods 

Data acquisition and preprocessing

This study was approved by the University of 
Tokyo Graduate School of Medicine institutional ethics 
committee (ID: 11628-(3)). Informed consent is not 
required because this was observational study using 
publicly available data. We used the datasets of the A4 
study and ADNI obtained from the Laboratory of Neuro 
Imaging (LONI) (https://ida.loni.usc.edu) in October 
2019 and the J-ADNI dataset obtained from National 
Bioscience Database Center (NBDC) (https://humandbs.
biosciencedbc.jp/en/hum0043-v1) in June 2018 with the 
approval of the data access committee. The ADNI was 
launched in 2003 as a public-private partnership, led 
by Principal Investigator Michael W. Weiner, MD. The 
primary goal of ADNI has been to test whether serial 
magnetic resonance imaging (MRI), PET, other biological 
markers, and clinical and neuropsychological assessments 
can be combined to measure the progression of mild 
cognitive impairment (MCI) and early AD. For up-to-date 
information, see www.adni-info.org. 

In this study, we used the data of cognitive normal 
participants. General inclusion criteria for the cognitive 
normal participants were determined in reference to 
an earlier study on the preclinical Alzheimer cognitive 
composite (PACC) (3), defined as follows: participants 
ages 65 to 85 years old (* 60 to 84 years old for cases from 
the J-ADNI cohort) at the time of screening with a global 
Clinical Dementia Rating (CDR-global) score of 0, with 
MMSE score (27-30) and Delayed Recall score on the 
Logical Memory IIa subtest (8-15) for participants with 
13 or more years of education, or with MMSE (25-30) and 
Delayed Recall score (6-13) for participants with 12 years 
or less of education. 

To determine Aβ accumulation status in A4 study 
cohort,  with/without (binary) positive Aβ-PET 
(florbetapir) at a varying threshold level of Standardized 
Uptake Value ratios (SUVr) (value corresponding to 
the ‘Composite_Summary’ in the ‘A4_PETSUVR.csv’ 
file) was used (Supplemental Table 1). Meanwhile, in 
the ADNI data, due to the limited number of eligible 
participants with missing data, we used CSF Aβ42 < 192 
pg/mL (values of median batch in the ‘UPENNBIOMK_
MASTER.csv’ file) as the criterion for positive Aβ 
accumulation (15). In the J-ADNI cohort, cases with CSF 
Aβ42 < 333 pg/mL (values in the ‘pub_csf_apoe.tsv’ file) 
(10) or with positive findings on the visual assessment of 
PiB-PET results (as listed in the ‘pub_petqc.tsv’ file) (16) 
were determined as positive Aβ.

We used the following clinical and laboratory features, 
which are available commonly in A4, ADNI, and J-ADNI 
datasets, as exploratory variables to include into the 
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models: age at baseline, sex (male or female: binary), 
education years, with/without parental history of AD 
(binary), with/without elevated Clinical Dementia Rating 
sum of boxes (CDR-SB) at baseline (≥0.5 or not: binary), 
with/without APOE ε4 allele(s) (binary), and the baseline 
PACC score. Other features such as brain MRI or blood 
test results as used in our previous studies (11, 17, 18) 
were not included because they are not always available 
from A4, ADNI, and J-ADNI cohorts in a unified manner. 
Since the A4 study dataset up to 2019 contains baseline 
data alone and the participants’ sequential changes 
have not been available, we also used the baseline data 
alone from the ADNI and J-ADNI datasets. The parental 
history of AD was regarded as positive if there was a 
statement that the participant’s father or mother had been 
diagnosed with AD, and it was regarded as negative if 
there was no such statement or the data were missing.

The PACC score (3) is the composite score, which is 
calculated from the sum of Z scores from 4 items: (1) 
the Total Recall score from the Free and Cued Selective 
Reminding Test (FCSRT), (2) Delayed Recall score on the 
Logical Memory IIa subtest from the Wechsler Memory 
Scale, (3) Digit Symbol Substitution Test score from the 
Wechsler Adult Intelligence Scale-Revised, and (4) MMSE 
total score [3]. Since the PACC score was not calculated in 
the ADNI and J-ADNI studies, we calculated the virtual 
PACC score by using the score of “LDELTOTAL: for 

Logical Delayed, the score of ”DIGITSCOR” for the Digit 
Symbol Substitution Test, and the total MMSE score. 
Furthermore, instead of using the FCSRT test score, which 
was not conducted in ADNI and J-ADNI studies, we used 
the delayed recall scores of ADAS-cog13 (Q4) in ADNI 
and J-ADNI datasets as in the earlier study (3). The Z 
scores of each of the 4 items were calculated within each 
ADNI or J-ADNI cohort in reference to the data of the 
cognitive normal cohort as allocated at baseline (“DX_
bl” of “CN” (cognitive normal) or “SMC” (subjective 
memory complaints) in ADNI and the “COHORT” of 
“NL”: (normal) in J-ADNI.

Missing data were handled by using the list-
wise method: samples with missing data in the above 
modeling features were excluded from the analysis. 
Eventually, we included n = 3233 unique eligible cases 
of the A4 study cohort, n = 86 eligible cases of the ADNI 
cohort, and n = 50 eligible cases of the J-ADNI cohort. 

Concepts of our proposed method

Here we explain how to demonstrate the practical 
effectiveness of our proposed ideas. First, we built a 
large number of models based on the varying SUVr 
configurations (Figures 1A, 1B) to predict positive 
Aβ within the A4 cohort data. Then, we evaluated 
the performance of these models, as calculated by 

Figure 1. Conceptual outline of our proposed method

We at first built a large number of models based on varying SUVr configurations (A, B), then we evaluated the performance of these models in each of the half-split external 
cohort (= ADNI or J-ADNI here) subgroups of cognitive normal participants (C, D). We supposed that we know the Aβ status of each case in subgroup1, while we do not 
know the statuses in subgroup2. When we compare the predictive performance results’ distribution across different SUVr configurations (from 1 to k) between the external 
cohort half-split subgroups (e.g. ADNI or J-ADNI), the actual correlation should fall into the either significantly negative (F), non-significant (G), or significantly positive (H). 
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area under the curve (AUC) as a performance metric 
of binary prediction models available regardless of the 
threshold value, in each of the half-split subgroups of the 
external cohort from A4 comprised of cognitive normal 
participants (Figure 1C, 1D). Suppose we know the Aβ 
status of each case in subgroup1 (Figure 1C), while we 
do not know the status of each case in subgroup2 (Figure 
1D). When we compare the distribution of predictive 
performance results across all SUVr configurations (from 
1 to k here) between the subgroups (Figure 1E), the true 
correlation should fall into the significantly negative 
(Figure 1F), non-significant (Figure 1G), or significantly 
positive (Figure 1H) categories. If we can observe that 
the actual correlation is consistently positive using the 
various datasets for evaluation (e.g. ADNI and J-ADNI 
here), to find which model’s SUVr configuration achieves 
the highest performance in one subgroup, this would also 
result in the near-highest performance in the rest another 
subgroup with unknown Aβ status (Figure 2A & 2B). We 
call the procedure to find the SUVr configuration with 
the highest AUC in one subgroup the ‘optimization of 
models’. 

The significant-positive correlation (Figure 1F) is the 
prerequisite for this optimization. Although the half-split 
subgroups derived from the same cohort might tend to 
have a positive correlation due to the similar variance in 
their participants’ demographical data, such a tendency 
is not always validated, especially in cohorts which are 

far smaller (e.g. ADNI or J-ADNI cognitive normal cases) 
than the A4 cohort. If the correlation between subgroups 
occasionally becomes negative (Figure 1F) or non-
significant (Figure 1G), the optimization will not work. 
Therefore, our goal in this study was to confirm that the 
correlation between the half-split validation subgroups 
(Figures 1C versus 1D) is reproducibly significantly-
positive (Figure 1F-H) and then to assess the degree 
of AUC improvement by employing this optimization 
procedure (Figures 2A & 2B), using the ADNI and J-ADNI 
datasets as validation. 

Processing workflow: model training and 
performance evaluation

A detailed data processing workflow is outlined in 
Supplemental Figure 1. The target of A4-cohort predictive 
models is whether they are with/without positive 
Aβ-PET (florbetapir) (binary) which are determined at 
varying SUVr threshold levels. In the model training, the 
SUVr threshold continuously varied by 0.01 from 0.99 
to 1.47, corresponding to the [mean – 0.5 SD] and the 
[mean + 2 SD] of SUVr distribution in all the A4 data. 
Furthermore, we excluded the Aβ-negative cases with an 
SUVr barely lower than the threshold, between which the 
margin range is varied, in order to exclude possible false-
negative cases. This exclusion procedure substantially 
also acts to exclude possible false-positive cases, clarifying 

Figure 2. Evaluation of performance improvement

If we could observe that the actual correlation is consistently positive using the several datasets for evaluation (e.g. ADNI and J-ADNI here) as in the Figure 1H, the 
“optimization” to take the SUVr configuration of the model achieving the highest performance in one subgroup would also result in the near-highest performance in the rest 
of another subgroup with unknown Aβ status (A, B).
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the difference between cases with and without positive 
Aβ. Simultaneously adjusting with the above SUVr 
threshold, the “exclusion range” (Supplemental Figure 
1A) is also adjusted continuously by 0.01 from 0 to 0.09, 
where 0.09 corresponds to [0.5 SD] of A4-SUVr. Taken 
together, cases whose SUVr is higher than the [threshold 
value] are defined as Aβ-positive, and the cases whose 
SUVr is lower than the [threshold value – exclusion range 
value] are defined as Aβ-negative (Supplemental Figure 
1A). We here define this way of varying Aβ allocation and 
the eligible case inclusion as “SUVr configuration,” which 
is used to generate a large number of models (Figure 1B). 
This SUVr configuration can be changed into 48 SUVr 
threshold patterns *10 exclusion range patterns = 480 
combination patterns in total. 

Since the small proportion of cases within the exclusion 
range is eliminated, the eligible A4 dataset A_k, which is 
from the A4 cohort cases (n = 3233), is slightly different 
depending on each SUVr configuration k (k=1,2,…480) 
(Supplemental Figure 1B). Then a randomly selected 
70% of A_k were further picked up as the A4 training 
subgroup A’k; using this A’k subgroup, we trained a model 
M_k predictive for positive Aβ (Supplemental Figure 
1C). For the model Mk, we separately constructed 2 
types of models, one of them including APOE ε4 status 
into its features (denoted as “model with APOE”), and 
another not including APOE ε4 status into the model 
(“model without APOE”) (Supplemental Figure 1C). This 
is because APOE ε4 is one of the strongest determinants 
of the CSF Aβ42 level (19), while a model without 
APOE ε4 status would be more convenient to use as 
a screening index. The training was conducted with 
10-fold cross validation and by a penalized generalized 
linear regression (GLM) algorithm using R package 
“caret” (20). Automated optimization of penalized GLM 
hyperparameters was conducted with grid-search by the 
caret function. 

Then the predictive performance of the model M_k 
was validated in the ADNI and J-ADNI cohort data, out 
of the original A4. We split the ADNI and J-ADNI cohorts 
into half subgroups (“subgroup1” & “subgroup2”) 
randomly (Supplemental Figure 1G, in Figures 1C & 
1D) while retaining equal proportions of Aβ positive 
between the half subgroups using the “caret” package 
function (“createDataPartition”), then we aimed to 
compare the performance between ADNI subgroups or 
between J-ADNI subgroups. The predictive performance 
was measured with the metric of area under the curve 
(AUC), which is calculated by the predicted probability 
for the positive Aβ of each case in the applied dataset 
(Supplemental Figure 1D). 

Since the randomly sampled A’k subgroup yields a 
slightly different model (Supplemental Figure 1C) every 
sampling time, we repeated the above processing steps 
(B-D: circled with gray color) 5 times in each k (shown 
with dagger mark [†]). We named the median from 5 
times of AUC results as the vXi,k (Supplemental Figure 1E), 

which means it is derived from the k-th configuration-
based model Mk applied to the subgroup Xi. 

As the configuration can vary for 480 types as 
described above, the full validation results (k=1, 2, ...480) 
for one subgroup are represented by a vector with a 
length of 480. For example, when one cohort X (= ADNI 
or J-ADNI) data are split into subgroup X1 and subgroup 
X2, vectors representing the results for these subgroups, 
which correspond to the result list of Figures 1C and 1D, 
are described as follows (Supplemental Figure 1F): 

VX1=[vX1,1,vX1,2,…vX1,480]
VX2=[vX2,1,vX2,2,…vX2,480]

Then we measured the correlation between V_ADNI1 
and VADNI2, and between VJADNI1 and VJADNI2.

The above process (steps A-F) was repeatedly 
performed for each ADNI and J-ADNI half-split subgroup 
(Supplemental Figure 1G), which are randomly separated 
30 times in total (shown with the asterisk [*]), eventually 
yielding 30 sets of [VADNI1,VADNI2,VJADNI1,VJADNI2]. 

Next, we again explain how the ‘optimization’ 
is conducted using Figure 1 & 2, the example scatter 
plot of VX1 (plotted on X-axis) versus VX2 (plotted on 
Y-axis) across all 480 patterns of SUVr configurations in 
one randomization time (*). On this plot, the Pearson 
correlation between the VX1 and VX2 was R = 0.967 (p 
< 0.001). When we choose the ka of which vX1,ka takes 
maximum among the VX1, the performance AUC with 
the same ka-th SUVr configuration (= vX2,ka) would also 
be approximately the highest among VX2. In other words, 
based on the assumption that the correlation between 
the vectors VX1 versus VX2 is significantly-positive (as 
in Figure 1H), we can optimize the predictive model in 
reference to the half subgroup X1 alone so that the model 
takes the most of the best performance both in X1 and 
the rest from the half subgroup X2 of which performance 
distribution is unknown to us, by choosing the k of which 
vX1,k is the highest among VX1.

And when we choose the kb of which vX1,kb takes 
minimum among the VX1, the performance AUC with 
the same kb-th SUVr configuration (= vX2,kb) would also 
be approximately the lowest among VADNI2: the difference 
between the vX2,ka and vX2,kb just corresponds to the 
theoretically-maximum AUC improvement expected to 
be achievable by the present “optimization” procedure 
(Figure 2A). 

Furthermore, we compared the optimized result and 
the non- optimized result based on the conventionally-
used SUVr configuration (e.g., threshold of 1.15 (21)). 
Supposing an i-th SUVr configuration with a threshold of 
1.15 and exclusion range of 0, we measured the difference 
between the above vX2,ka and the resulting AUC vX2,i of 
the i-th configuration in subgroup2. This difference just 
corresponds to the AUC improvement expected to be 
achieved by using this optimization procedure [Figure 
2B], compared to the conventional settings when not 
using “optimization” as in earlier studies.
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Statistical analysis

All data handling and statistical analysis were 
performed using the software R 3.5.1 (R Foundation for 
Statistical Computing, Vienna, Austria). For numerical 
data, we used median and interquartile ranges (IQR) 
for summarization and the Wilcoxon rank sum test or 
analysis of variance (ANOVA) test for comparisons 
between groups. For categorical data, we used frequency 
and percentage for summarizing and Fisher’s exact test 
for the group comparison. For calculating correlations 
between two numerical vectors, we used Pearson’s 
correlation. A P-value less than 0.05 was regarded as 
statistically significant if not mentioned otherwise. 

 
Results 

Overview of the demographical distribution of 
the included cohorts 

Basic demographics are shown in Supplemental Table 
1, revealing slight differences among the data of the 3 
included cohorts (A4, ADNI, and J-ADNI). The J-ADNI 
cohort participants had a significantly younger median 
age, were more predominantly male, and had fewer 
years of education than the other 2 cohorts. There was 
no significant difference among the 3 cohorts in the 
distribution of CDR-SB, parental history of AD, APOE ε4 
status, and the baseline PACC. 

In addition, we also evaluated the performance of each 
single feature for predicting positive Aβ in each of the 
included cohorts. A heatmap of AUC result values as the 
predictive performance of the corresponding features (in 
columns) in each corresponding cohort (in rows) is shown 
in Supplemental Figure 2A. For the A4 cohort on this 
heatmap, a SUVr threshold of 1.15 was used (21). Each 
of the features except for APOE has a different level of 
association with the positive Aβ status, depending on the 
cohort. 

Cohort-specific “optimization» of models

Next, we obtained the predictive performance of 
models based on the varying SUVr configuration 
evaluated with AUC in the ADNI and J-ADNI 
subgroups. We visualized the examples of the result 
vectors VADNI1, VADNI2, VJADNI1, and VJADNI2, summarizing 
the AUC from 480 different SUVr configurations (48 
types of SUVr thresholds × 10 types of exclusion ranges: 
Supplemental Figure 1A) by converting them into 
heatmap matrices for clarify (Supplemental Figure 2B). 
Each cell in the heatmaps represent the performance 

AUC value of the model based on the corresponding 
SUVr configuration, where the row denotes the SUVr 
threshold and the column denotes the exclusion range. 
For the results from ADNI (Supplemental Figure 2B, 
left) or J-ADNI (Supplemental Figure 2B, right) data, 
we can see that the AUC performance results distribute 
differently depending on the SUVr configuration, and that 
the AUC performance results distribute differently largely 
depending on the cohort. 

By choosing the darkest cell in the heatmap from 
the ADNI-subgroup1 (Supplemental Figure 2B), we 
can select the SUVr for each model’s performance as 
that which is the highest in the ADNI subgroup1. As 
there was a positive correlation of R = 0.767 (p < 0.001) 
between the AUC heatmap of the ADNI subgroup1 and 
ADNI subgroup2 (Supplemental Figure 2B, left), the 
selected SUVr configuration would also take the near-
best performance when applied to the rest of ADNI 
subgroup2. The same is true to the pair of J-ADNI 
subgroups (Supplemental Figure 2, right), between which 
there was a positive correlation of R = 0.493 (p < 0.001). 
This “optimization” procedure is generally cohort-specific 
since each cohort has specific spatial distribution of the 
resulting AUC heatmaps. Conversely, by choosing the 
lightest cell in the heatmap from ADNI subgroup1, the 
selected SUVr configuration would also show the near-
lowest performance when applied to the rest of the ADNI 
subgroup2. The difference between the near-highest and 
the near-lowest AUC within subgroup2 corresponds to 
the “expected maximum AUC improvement achievable 
by optimization,” the difference between the worst AUC 
when the “optimization” was not used, and the best AUC 
when the “optimization” was used.

Now the set of [VADNI1,VADNI2,VJADNI1,VJADNI2] (as in 
Supplemental Figure 2B) is repeatedly obtained for 30 
times of ADNI and J-ADNI randomization (Supplemental 
Figure 1G, [*]), at first based on the model “with APOE”: 
Figure 3A shows the distribution of the obtained 
correlation coefficients (as in Figure 1F-H) between 
VADNI1 and VADNI2 (summarized as Figure 3A, [a] & [b]) 
or between VJADNI1 and VJADNI2 (summarized as Figure 
3A, [c] & [d]), repeated 30 times in total. In the ADNI 
cohort of models “with APOE” (Figure 3A [a]), Pearson’s 
correlation coefficient between the ADNI subgroup1 
and subgroup2 was a mean of 0.897 (the mean’s 95% 
CI: 0.877 - 0.917), and the correlation coefficient > 0 and 
p-value < 0.05 were simultaneously observed in 30/30 
of randomization (*) trials, fully meeting the prerequisite 
of our “optimization” method. The expected maximum 
AUC improvement width was a mean of 0.077 (the 
mean’s 95% CI: 0.069 - 0.085) (Figure 3B [a]), and the 
expected AUC improvement when compared to the 
AUC in a model of SUVr threshold 1.15 was a mean of 
0.033 (95% CI: 0.022 - 0.043) (Figure 3C [a]), e.g. AUC 
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value improved from 0.724 to 0.774 in a representative 
case. Similarly, in the ADNI cohort by models “without 
APOE” (Figure 3A [b]), the correlation coefficient was 
a mean of 0.517 (the mean’s 95% CI: 0.444 - 0.582), and 
the correlation coefficient > 0 and p-value < 0.05 were 
simultaneously observed in 30/30 of randomization trials 
(*). The expected maximum AUC improvement width 
was a mean of 0.107 (the mean’s 95% CI: 0.086 - 0.129) 
(Figure 3B [b]), and the expected AUC improvement 
when compared to the AUC in a model of SUVr with 
a threshold of 1.15 was a mean of 0.075 (95% CI: 0.057 
- 0.093) (Figure 3C [b]), e.g. AUC value improved from 
0.61 to 0.69 in a representative case. In comparison, the 
expected maximum AUC improvement achievable by the 
“optimization” was greater in models “without APOE” 
than in models “with APOE” (Figure 3B) in ADNI (Figure 
3B [a] versus [b], and Figure 3C [a] versus [b]).

In the J-ADNI cohort models “with APOE” (Figure 
3A [c]), the correlation coefficient between J-ADNI 
subgroup1 and subgroup2 was a mean of 0.301 (the 
mean’s 95% CI: 0.107 - 0.495), and a significant and 
positive correlation was observed in 22/30 randomization 
(* )  t r ia ls ,  showing occasional ly  unsuccessful 
“optimization.”  The expected maximum AUC 
improvement width was a mean of 0.011 (the mean’s 95% 
CI: 0.001 - 0.020) (Figure 3B [c]), and the expected AUC 
improvement when compared to the AUC in a model 
of SUVr with a threshold 1.15 was a mean of 0.009 (95% 

CI: 0.003 - 0.016) (Figure 3C [c]), e.g. AUC value showed 
few improvement from 0.65 to 0.65 in a representative 
case. Furthermore, in the J-ADNI cohort models “without 
APOE” (Figure 3A [d]), the correlation coefficient was a 
mean of 0.353 (95% CI: 0.258 - 0.448), and a significant and 
positive correlation was observed in 26/30 randomization 
trials (*), mostly meeting the “optimization” prerequisite. 
The expected maximum AUC improvement width was 
a mean of 0.086 (95% CI: 0.060 - 0.113) (Figure 3B [d]), 
and the expected AUC improvement when compared to 
the AUC in a model of the SUVr threshold of 1.15 was a 
mean of 0.019 (95% CI: 0.007 - 0.030) (Figure 3C [d]), e.g. 
AUC value improved from 0.61 to 0.64 in a representative 
case. The models “without APOE” showed a higher 
expected maximum AUC improvement achievable with 
the “optimization” than the models “with APOE” (Figure 
3B [c] versus [d], and Figure 3C [c] versus [d]).

Discussion

In this retrospective study, we demonstrated our 
attempts to optimize the A4 study-derived predictive 
models to be applicable to external cohort datasets, 
including ADNI and J-ADNI. The proposed method 
has novelty in that we operationally manipulated the 
positive Aβ allocation in the original training data of A4, 
thereby enabling the achievement of the best-performing 
model when applied to the external cohorts, including 

Figure 3. Correlation coefficients between the resultant AUC vectors from half-split subgroups and the degree of AUC 
improvement

Box plots show the distribution of the obtained correlation coefficients (as in Figure 1F-H) between V_ADNI1 versus V_ADNI2 (A, [a] & [b]), or between V_JADNI1 and 
V_JADNI2 (A, [c] & [d]), repeated 30 times in total. Each box corresponds to the range between the lower and upper quartiles (Q1 and Q3, respectively), and the range 
between whiskers corresponds to the data distribution within the range of [Q1 - 1.5*IQR, Q3 + 1.5*IQR]. In the ADNI cohort (A, [a] & [b]), 30/30 of results both with models 
“with APOE” (A, [a]) or “without APOE” (A, [b]) showed a significantly positive correlation between V_ADNI1 versus V_ADNI2. In the J-ADNI cohort, 22/30 results of 
models “with APOE” (A, [c]) were significantly positive, and 26/30 results of models “without APOE” (A, [d]) were significantly positive. The expected maximum AUC 
improvement achievable by the “optimization” (B), and the expected AUC improvement achievable by “optimization” when compared to the model based on the SUVr 
threshold of 1.15 without optimization (C) are plotted. In all models ([a]-[d]), the mean of “expected AUC improvement” was significantly higher than 0 (i.e. its lower 95% 
CI > 0), and a model “without APOE” in the ADNI cohort had approximately 0.10 of AUC improvement. 
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ADNI and J-ADNI. The obtained AUC had improved 
mildly when compared to the AUC in case of literature-
based predetermined SUVr threshold configuration. This 
means our ‘optimization’ procedure allowed us to obtain 
preclinical AD models for ADNI or J-ADNI with slightly 
better predictive performance. Our method may be 
practically useful in the middle of ongoing clinical study 
of preclinical AD, as a screening to further increase the 
prior probability of preclinical AD among the remaining 
samples before their amyloid testing.

The motivation of this study was mainly based 
on the concern as to the direct application of the A4 
study-derived models to J-ADNI cohort, due to the 
differences in the distribution of participants’ baseline 
demographics such as age, sex, education years, ethnicity, 
the proportion of positive Aβ (Supplemental Table 1), or 
any unexamined clinical, laboratory, or genetic factors. 
It is known that such differences in the probability 
distributions of each feature between the training and 
validation datasets lead to failures in accurate prediction. 
“Transfer learning” is used in the field of deep learning 
as one of its solutions, enabling us to apply the trained 
model to the dataset origin of other domains. Thus, if 
utilized in our settings, it would enable us to apply the 
dataset from a different regional population with the 
smaller sample size (22, 23). However, our approach is 
based on conventional machine learning and is different 
from ‘transfer learning’, which we have not used since 
even the Aβ status in the original training data (= A4 
study cohort) has not been definitely determined yet. If 
the biologically-corroborated criteria for the Aβ status 
are established within the original A4 cohort, transfer 
learning would be employable for building models 
effectively applicable to ADNI or J-ADNI datasets. 

As expected, the efficacy of “optimization,” which is 
measured by the degree of AUC improvement compared 
to the resulting AUC of not using the “optimization,” 
was higher than 0 in average. The degree of maximum 
improvement in AUC (Figure 3B) and the degree of 
AUC improvement compared to the SUVr threshold of 
1.15 (Figure 3C) are both approximately 0.10 in models 
“without APOE” applied to the ADNI cohort (Figure 
3B[b], 3C[b]), which means this optimization procedure 
is expected when applied to the models “without APOE.” 
Although showing a smaller improvement, the models 
“without APOE” applied to the J-ADNI cohort also had a 
higher AUC than in the case of the models with any SUVr 
configuration (Figure 3B[d]) or with a conventional SUVr 
threshold 1.15 (Figure 3C[d]). This difference between 
ADNI and J-ADNI in their degree of AUC improvement 
may be due to the difference in their size of samples or in 
the degree of inter-cohort variation as represented by the 
different amyloid positivity rate. 

Generally, the degree of AUC improvement (Figure 3B, 
3C) tended to be higher in models “without APOE’”([b], 
[d]) than in models “with APOE” ([a], [c]), which means 
the performance is expected to improve by optimization 

much larger models “without APOE” than models “with 
APOE,” probably reflecting the high importance of APOE 
ε4 status as a variable for predicting positive Aβ. In 
addition, when the model “with APOE” was used, only 
22/30 of a randomized half-split of the J-ADNI dataset 
led to a significantly positive correlation between VJADNI1 
and VJADNI2, while it was more frequent (26/30) when the 
model “without APOE” was used. These results suggest 
that the current optimization methods are more reliably 
and effectively used in models not including APOE ε4 
status as features than those including it.

The current approach to adjust SUVr configuration 
consisted of the SUVr threshold and the exclusion of 
cases whose SUVr is barely lower than the threshold, is 
no more than an operational procedure here and is not 
biologically-validated in a strict sense. In this point, we 
need to be careful in the interpretation on the obtained 
final model or its variables’ importance that it is the 
“transferred” model and does not have certain biological 
basis on its own. For example, when we identified one 
feature (e.g. higher PACC) with high variable importance 
in the final model, the potential biological association 
between that feature and the Aβ positivity may be smaller 
than in the case of conventional non-transferred models. 

Our study has some limitations. First, while the 
degree/frequency of positive correlation between the 
result vectors (Figure 3A) might be influenced by the 
size of the validating cohort datasets or their intra-cohort 
data variability, as suggested by our results where the 
efficacy of “optimization” showed smaller improvement 
and lower reliability when applied to the J-ADNI cohort 
than to the ADNI cohort, we have not examined the 
detailed conditions (e.g. sample size) required for the 
validation of datasets to be eligible for the “optimization” 
procedure. Further validation may be needed in other 
external cohorts with various kinds of sample sizes. 
Second, in the case of the single multi-center clinical trial 
to which we attempt to apply our method practically, 
there may be uncertainty whether the two subgroups 
collected from different facilities truly have a similar 
distribution in their demographical features, which is the 
pre-requisite for the external application of the current 
methods. Also, the extent to which the difference in 
inter-subgroup feature distribution can be allowed may 
be uncertain, and the sample size required to alleviate 
the potentially underlying variance between subgroups 
may also remain uncertain. Third, the proposed method 
manipulates the original training data distribution so 
as to be specifically best-performing in the validation 
cohort of interest, so the final model is not reversely 
applicable to the original A4 cohort data or to other 
cohorts with different demographical distributions. The 
fourth limitation is related to the PACC calculation in 
ADNI and J-ADNI: the validity of using ADAS-cog 13 
(Q4) as a substitution of FCSRT, and the validity of setting 
‘”NL” cohort data as a reference of PACC calculation. 
And the fifth is that the proposed method takes a certain 
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amount of computational times, since model training and 
validation are repeatedly needed: 30 times of ADNI or 
J-ADNI splits for each [5 times of A4 training subgroup 
splits and model validations for each k (480 patterns in 
total)], eventually requiring us to calculate 30*5*480 = 
72,000 times of model training and validation. This is 
actually one of the reasons why we used penalized GLM 
as the prediction algorithm here, which takes shorter 
computational time than other types of algorithms such 
as random forest or support vector machine, and it is 
designed to have a smaller risk of over-fitting to the 
training data. If possible, other algorithms should also be 
tried (24). And lastly, used 3 cohorts referred to different 
modality of amyloid tests (i.e., florbetapir-PET in A4, 
CSF in ADNI, and CSF and PiB-PET in J-ADNI), possibly 
lowering the applicability of our method.

To conclude, we proposed a novel method to obtain 
preclinical Aβ predictive models specifically optimized 
to the cohort of interest in order to achieve extrapolative 
application out of the original training data. This 
optimization procedure showed efficacy of up to 0.10 
of AUC improvement when used in combination with 
the models “without APOE.” Our method may be 
practically useful in the mid of the actual clinical study of 
preclinical AD, as a screening to further increase the prior 
probability of preclinical AD before amyloid testing.
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